wjec cbac

GCE MARKING SCHEME

SUMMER 2016

Mathematics – S3 0985/01

© WJEC CBAC Ltd.

INTRODUCTION

This marking scheme was used by WJEC for the Summer 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

Ques	Solution			Mark	Notes
1	The sample space and corresponding probabilities are as follows.				
	Sample	Max	Prob		B3 for correct samples and max
	2,2,2	2	1/20	B3	B3 for correct probabilities
	2,2,10	10	6/20	B3	– 1 each error or omission
	2,2,50	50	3/20		
	2,10,10	10	3/20		
	2,10,50	50	6/20		
	10,10,50	50	1/20		
	$E(M) = 2 \times \frac{1}{20} + 10 \times \frac{9}{20} + 50 \times \frac{10}{20}$ -= 29.6 (p)			M1 A1	
2(a)	$H_0: \mu = 6$	$H_0: \mu = 61; H_1: \mu < 61$			
(b)	$\sum x = 603.4 \text{ si}; \sum x^2 = 36419.5$ UE of $\mu = 60.34$			B1B1 B1	No working need be seen
	$UE = 6 = -2^{2} = 36419.5 = 603.4^{2}$			M1	M0 division by 10
	UE of $\sigma^2 = \frac{1}{9} - \frac{1}{90}$				Answer only no marks
	= 1.149 (431/375)			A1	
(c)	Test stat = $\frac{60.34 - 61}{\sqrt{\frac{1.149}{10}}}$			M1A1	M0 for no working Note that p -value = 0.0417
	= -1.947 DF = 9 si Crit <i>t</i> value = 1.833			A1 B1 B1	
	This result suggests that we should reject H_0 , ie that the average miles per gallon is less than 61 because $1.947 > 1.833$ oe		B1 B1	FT the conclusion No FT for reason if <i>z</i> -value used	

GCE Mathematics - S3 Summer 2016 Mark Scheme

Ques	Solution	Mark	Notes
3(a)	$\hat{n} = \frac{44}{2} = 0.55$ si	B1	
	$p = \frac{1}{80} = 0.55$ sr		
	$ESE = \sqrt{\frac{0.55 \times 0.45}{80}} \ (= 0.0556) si$	M1A1	M1A0 if $$ omitted
	90% confidence limits are 0.55±1.645×0.0556 giving [0.459,0.641]	M1A1 A1	M1 correct form, A1 correct z
(b)(i)	$\hat{q} = \frac{0.555 + 0.705}{2} = 0.63$	B 1	
	Games won = $0.63 \times 100 = 63$	B1	
(ii)	$0.705 - 0.555 = 2 \times z_{\sqrt{\frac{0.63 \times 0.37}{100}}}$ or equiv	M1A1	
	z = 1.55	A1	
	Prob from tables = $0.0606 (0.9394)$	A1	
	Confidence level $= 88\%$	A1	
		D1	
4(a)	$H_0: \mu_A = \mu_B; H_1: \mu_A \neq \mu_B$	BI D1	
(0)	$\bar{x} = 251.6; \bar{y} = 251.4 \text{ or } \bar{x} - \bar{y} = 0.2$	DI	
	$s_x^2 = \frac{5064256}{79} - \frac{20128^2}{79 \times 80} = 0.648(256/395)$	M1A1	
	$s_y^2 = \frac{5056222}{79} - \frac{20112^2}{79 \times 80} = 0.825(326/395)$	A1	
	[Accept division by 80 giving 0.64 and 0.815] $SE = \sqrt{\frac{0.648}{80} + \frac{0.825}{80}} = 0.135 (0.1348)$	M1A1	
	$z = \frac{251.6 - 251.4}{251.4}$	m1	
	0.135	. 1	
	=1.47 or 1.48	AI A1	
	Prob from tables = 0.071 or 0.069	B1	FT from line above
	p-value = 0.14	DI	
	Insufficient evidence to reject H ₀	B 1	FT the p-value
(c)	The CLT allows us to assume that the distributions of the sample means are (approximately) normal	B1	

Ques	Solution	Mark	Notes
5(a)	$\sum x = 210, \sum x^2 = 9100,$	B2	Minus 1 each error
	$\sum y = 1286, \sum xy = 48730$		
	$S_{xy} = 48730 - 210 \times 1286/6 = 3720$	B1	
	$S_{xx} = 9100 - 210^2 / 6 = 1750$	B1	
	$b = \frac{3720}{1750} = 2.13 (372/175)$	M1A1	M0 no working
	$a = \frac{1286 - 2.13 \times 210}{6} = 140 (2099/15)$	M1A1	M0 no working
(b)(i)	SE of $b = \frac{1.5}{\sqrt{1750}}$ (0.0358)	M1A1	FT from (a)
	95% confidence limits are 2.1257 ± 1.96 × 0.0358 [2.06, 2.20]	m1A1	
(ii)	$x_0 = 35$	B1	
	Because the SE of y or the width of the interval is	Dí	
	minimum when $x_0 = x$	B1	

Ques	Solution	Mark	Notes
6(a)(i)	$E(\overline{X}) = \frac{\sum_{i=1}^{n} E(X_i)}{n}$	M1	
	$= \frac{n\mu}{n} = \mu$ (Therefore \overline{X} is an unbiased estimator)	A1	
(ii)			
	$\operatorname{Var}(\overline{X}) = \frac{\sum_{i=1}^{n} \operatorname{Var}(X_i)}{n^2}$	M1	
	$=\frac{n\sigma^2}{n^2}=\frac{\sigma^2}{n}$	A1	
(b)(i)	SE of $X = \frac{0}{\sqrt{n}}$ Var $(X_i) = E(X_i^2) - [E(X_i)]^2$	M1	
	$\sigma^2 = E(X_i^2) - \mu^2$ $E(X_i^2) = \mu^2 + \sigma^2$	A1	
(ii)	$E(S^{2}) = \frac{\sum_{i=1}^{n} E(X_{i}^{2}) - nE(\overline{X}^{2})}{n-1}$	M1	
	$=\frac{n(\mu^2+\sigma^2)-n\left(\mu^2+\frac{\sigma^2}{n}\right)}{n-1}$ $=\sigma^2$	A1A1	
(c)		M1	
(C)	$Var(S) = E(S^2) - [E(S)]^2$	M1	
	$[E(S)]^{2} = \sigma^{2} - \operatorname{Var}(S)$		
	$<\sigma$ (since var(s) > 0) Therefore	AI	
	$E(S) < \sigma \text{ so } E(S) \neq \sigma$	A1	FT above line if both M marks
	(Therefore S is not an unbiased estimator for σ)		awarded

0985/01 GCE Mathematics S3 MS Summer 2016/LG